JASMINe Probe

User's guide
vl.l

JASMINe Probe: User's guide
JASMINe Team

Publication date $Id: jasmine-probe_guide.xml 9781 2012-02-07 12:45:56Z danesa $
Copyright © 2011 Bull SAS

SONE RIGHTS RESERVED

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license,visit http://
creativecommons.org/licenses/by-sa/2.0/deed.en [http://creativecommons.org/licenses/by/2.0/] or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Table of Contents

I T 1 (Yo 11 Tt 1 o] o FRR PO OPRTROPN 1
2. HOW t0 USE JASMINE PrODEciiiiiiiieiiii ettt e e e 2
2.1. Where to install JASMINE Probecoooiiiiiiiiiiiiii e 2

2.2. Installing JASMINE Probecocouiiiiiiiii e 2

2.3. Running JASMINe Probe in standalone modeccoooviivviiiiii i 3

3. DEFINILIONS .. e 4
G0 I /- 11 I 0] T =T o] £ 4

T 1= 10 1= 1 4

I B [o o= 1 (o] £~ PP 4

G S O 11 o 11 5

3.5, PrODES o e 5

4. JASMINE Probe artifacts Creationcoviiiiiiiiiiiiieci e 6
4.1, Target DEfiNitioNoiiiiiii e 6

4.2, Indicator definitioncooouiiiii 6
4.2.1. Create an iNICALOrcoeuuuuiiiiiiii e 6

4.2.2. Define a mX iNdiCALOr .. cvevuviiiiiii e 7

4.2.3. Define a df INAICALOrcoovueiiiiii e 9

4.2.4. Define a lewys iNdiCAtOrocvuuiiiiiiiiii e 9

4.2.5. Define an aggregate (or merge) iNndiCatorccoovvviveviineiiiieiineeniees 9

4.2.6. Define a correlate iNdiCatoroovveuiiiiiiiiiiie e 10

4.2.7. Define a derived INAICALOrc.cuuiiiiiiiiici e 10

4.2.8. Define a slope INAICALOrvcvvuiiiii e e 11

4.2.9. Define a constant iNAICAtOroveiiiiiiiiiiii e 11

4.3, Output defiNitioNoceeiii 11
4.3.1. Create an OULPULveuiie e e e e e e e e e e e e e e e e e eneeans 11

4.3.2. Define @ console OULPULeviiiiiicc e e e e 12

4.3.3. Define a file OULPULcoeviiii i 12

4.3.4. Define @ mule QULPULoouniiiici e 12

4.4, Probe definitionoooouiiiii 12

4.5. Configuration file for JASMINe Probe artifactscccooveviiiiviiiiiicececs 13

5. JASMINe probe artifacts managementcoooeiiiiiiiiii e 14
5.1. Target ManagemMENTcuiieiiiiiiiei et e e ans 14
0 I T I = 0[] £ 14

5.1.2. REMOVE TArgelS ..uuiieiiiiii it e e e e e eans 14

5.2. Indicator ManagemeNntcvuuiieiii e e e 14
5.2.1. List INAICALOr tYPES ..uvevniiiiieiii e e e 14

5.2.2. Show properties for and indicator typecccoveveiveviiiieii e, 14

5.2.3. LISt INAICALOIS ...ciiiiiiieiiiii e et 14

5.2.4. ReMOVE INAICALOISuuiiiiiiiiiiiiiiiie e 14

5.2.5. Change an iNdiCatoroeviuiiiiiiieeii e e r e e e 14

5.3, OULPUL MANAGEIMENT ...iueii i e e e e e e e e e e e eaneennees 15
5.3.1. LiSt OULPUL TYPES oevniiiiiiei et e e e e e 15

5.3.2. Show properties for and output typecoeveviiiiieiiii e 15

IR 0 T I 1 o 111 o 11 15

5.3.4. REMOVE OULPULS ...ovuiitiiii i e i e e et e e e e e e e e e e e e e s e e s eaneeen 15

5.3.5. Change an OULPULceeuniiii e ee e e e e e e ean s 15

5.4, Probe managementcceuiiiiiiiii e e e 15
5.4.1. LiSt ProDES ..ovveiii i 15

5.4.2. REMOVE PrODES ...ovviiiii it e e e e 15

5.4.3. Change @ Probeccuuiiiiiiii i 15

LS {0 T TV T o] o] o = 16
6.1. Interfaces for iINAICALOr VAlUESiviiiiiiiiiiiii e 16
6.1.1. JasminelndicatorValuecooviiiiiiiiiiiiii e 16

6.1.2. JasmineSINGIERESUILccouiiiiiiii e 17

6.2, INICALOr VAIUES it e 18

JASMINe Probe

6.2.1. IMX iNdICAtOr VAIUESuiiiiiiiiiiii e 18

6.2.2. D INdiCAtOr VAIUESccoiiiiiiiiiii e 18

6.2.3. Aggregate and merge indicator valuesc.ccooeeeviiieiiiinieiiiiinneeens 19

6.2.4. Correlate iNdiCator VAlUESiviiiiiiiiiiiiii e 19

6.2.5. Derived indiCator ValUEScooiiiiiiiiiiiiii e 20

6.2.6. Slope INdICAIOr VAIUESccoouuiiiiiiiieiii e 20

6.3. Output formats for indicator ValUESccoeuuiiiiiiiiiiiiiii e 20
6.3.1. Console oUtpUL FOrMALvieiiiiiiieiii e 21

6.3.2. File OUtpUL FOrMALuiiiiiiiei e 22

6.3.3. Mule OULPUL FOIMALcoovuiiiiiii e e 23

7. Advanced ConfigUurationocoouuiieiiii e 24
7.1. JASMINe Probe's platform configurationccoeiiiiiiiiiniiiiiieceieeees 24

7.2. JASMINe Probe configurationc.uoiiiiiiiiiii e 24

8. TO0IS e e 26
8.1. Felix Shell ComMmMAaNdScoouuiiiiiiiii e 26
8.1.1. Target ManagemeNtccceuuiiiiiiiiiieeire et 26

8.1.2. Indicator ManNageMENTcceuuuiiiiiii e 26

8.1.3. OUtPUL MANAGEMENT ... civiiiiiieii e 27

8.1.4. Probe managementuuuieiiiuinieiiii et 27

8.1.5. Configuration ManagemeNntcouuuiiiiiiiiieeiii e 27

8.2. JProbe ClIENteiiii e 27

8.3. Probe MaANAUEN ittt 27

A. Probe configuration SChEMAiiiiiiiiiiii e 28
B. Fragments Naming GramMaTeeeeunneeiiiiaeeeeiia e et et e e e et e e e e e eren s 30

List of Tables

4.1. Specific properties to define for a jmx indicatorcccoovvviiiiiiii i,

Chapter 1. Introduction

JASMINe Probe is a Java application developed within the OW2 JASMINe project [http://
wiki.jasmine.ow2.org/xwiki/bin/view/Main/WebHome]. It's aimed to monitor Java Middleware
targets by running probes.

The different kind of targets are Java EE Servers, ESB, Java EE Applications, the Java Virtual
Machines, and even the OS.

The role of a probe is to periodically collect monitoring data, represented by indicator values,
in order to make real time, or delayed, target supervision. Indicator values are published by
outputs towards different type of consumers, like for example the JASMINe Monitoring [http://
wiki.jasmine.ow?2.org/xwiki/bin/view/Main/Monitoring] application.

Several techniques are used to collect data. One of them is based on JMX, the Java
Management standard, which allows to collect monitoring data from the Management Beans
(MBeans) exposed by the targets. There are plans to support other standards, like SNMP,
in the future. Besides that, some system monitoring data can be directly obtained by reading
system files in an OS dependent implementation.

JASMINe Probe is modular and extensible. It is based on OSGi. The underlying OSGi
framework and the modular architecture of JASMINe Probe allow to easily add extensions
that support new targets, indicator, or output types.

JASMINe Probe can be used alone or in interaction with JASMINe Monitoring.

In standalone mode, the monitoring data collected by probes can be browsed directly on the
console terminal or/and saved into files.

Used in conjunction with JASMINe Monitoring, the indicator values are published into the
JASMINe Monitoring's message bus. This allows to use JASMINe EoS, the JASMINe
Monitoring Web Console for live or delayed supervision. Moreover, it allows to detect
abnormal behavior on targets, and possibly to execute repairing actions (see JASMINe
Monitoring documentation).

JASMINe EoS
Console

ESB " JASMINe JASMINe - o
- Probe Monitoring | 1
_ u. ’
Y ! 1
/& ,

PN

Monitoring data flow

v

http://wiki.jasmine.ow2.org/xwiki/bin/view/Main/WebHome
http://wiki.jasmine.ow2.org/xwiki/bin/view/Main/WebHome
http://wiki.jasmine.ow2.org/xwiki/bin/view/Main/WebHome
http://wiki.jasmine.ow2.org/xwiki/bin/view/Main/Monitoring
http://wiki.jasmine.ow2.org/xwiki/bin/view/Main/Monitoring
http://wiki.jasmine.ow2.org/xwiki/bin/view/Main/Monitoring

Chapter 2. How to use
JASMINe Probe

JASMINe Probe must be installed and run locally, on the monitored target's host, in case the
monitored target is the OS.

Otherwise, when monitoring Java targets, it can be installed on a distant host.
Remote access to the monitored targets is based on RMI (RMI based JMX connectors).

The JASMINe Probe project provides several packages allowing to install and use the
JASMINe Probe application.

» A pakage jasmine-probe-standalone.zip contains a pre-configured OSGi based JOnAS
[http://wiki.jonas.ow?2.org/xwiki/bin/view/Main/WebHome] platform.

* jprobe-client.jar represents a client application providing commands for the creation and
management of JASMINe Probe artifacts.

Unpacking the package results to a pre-configured JOnAS platform having the JASMINe
Probe application ready to be deployed.

$cd ...

$ unzi p j asmi ne- probe- st andal one. zi p

$ cd jasm ne- probe- st andal one

$ pwd

/'home/ . ../jasm ne-probe-standal one O j asm ne- pr obe- st andal one_di r

Set the following environment variables:

$ export JPROBE_ROOT=j asni ne- probe- st andal one_di r
$ export PATH=$JPROBE_ROOT: $PATH

The jasmine-probe-standalone_dir installation directory contains several files and directories
including:
» jasmine-probe.sh and jasmine-probe.bat commands allowing to start/stop the platform.

+ confdirectory containing configuration files for JOnAS and a probe-config.xml configuration
file containing some JASMINe Probe artifacts definitions.

* jprobe-client.jar client application allowing to dynamically create and manage JASMINe
Probe artifacts.

 deploy directory containing a deployment plan for JASMINe Probe modules' deployment.

* repositories, a local maven repository containing the JASMINe Probe modules.

http://wiki.jonas.ow2.org/xwiki/bin/view/Main/WebHome
http://wiki.jonas.ow2.org/xwiki/bin/view/Main/WebHome

How to use JASMINe Probe

Then start the platform. The JASMINe Probe application is automatically deployed due to
the deployment plan under the deploy directory.

$ j asmine-probe. sh start

The traces show that a JOnAS server, named ‘'jasmine-probe’ is started and JASMINe Probe
modules deployed. Moreover, some probes are created corresponding to definitions provided
in the probe-config.xml configuration file located under the conf directory.

Now JASMINe Probe is ready for user to:

* create new probes,

* start/stop probes execution,

e manage created probes (list, change or remove),
» save probes definitions to a XML file,

* load probes definitions from a XML file.

These operations can be done using Apache Felix Shell Commands or executing the jprobe-
client.jar application. See Chapter 8, Tools for details.

You may stop the platform:

$ jasm ne-probe. sh stop

Chapter 3. Definitions

The main concepts used in JASMINe Probe are: target, indicator, output and probe.
The role of a probe is to supervise a target by periodically collecting monitoring data.

The role of an indicator is to specify the data to be collected. In JASMINe Probe, the
monitoring data is represented by indicator values.

Finally, the role of an output is to specify what to do with the collected data (this depends on
how the collected data is intended to be used).

In order to run probes, one have to define indicators, outputs and possibly targets, then use
these artifacts to define the probes.

A target is identified by a name chosen by the user and specified in the target's definition.

Target names must be unique. They are used in probe definitions, but may also be used in
indicator definitions (only for some indicator types).

Currently, only one target type is supported in JASMINe Probe: the jmx target type. When
the monitored target is the OS, there is no need to define explicitly a target artifact. When
monitoring a JVM, a jmx target must be defined.

Besides name and type, the jmx target definition includes other properties, like the JMX
URL allowing to establish connection with the monitored target (see Section 4.1, “Target
Definition”).

An indicator specifies the monitoring data to be collected by probes.
It is identified by a name chose by the user and specified in its definition.

Indicator names must be unique. They are used in probe definitions (each probe definition
must specify at least one indicator). When running a probe, the indicator names are used to
identify the values produced by the probe and published by outputs.

Several types of indicators are supported in JASMINe Probe. The complete list is provided
in Chapter 4, JASMINE Probe artifacts creation. New indicator types may be developed and
thus extend JASMINe Probe's capability to monitor targets. Moreover, all the indicator types
are optional (see ???).

Besides name and type, an indicator definition includes other properties that depend on its
type.

We can distinguish two indicator categories: raw and processing indicators.

« Raw indicators specify data to be collected from targets. A raw indicator's values are
obtained by reading some resource values (MBean attributes, system resources, etc.)

» Processing indicators are aimed to produce new monitoring values by processing some
source indicator values.

Definitions

Several kind of processing operations are supported by the different processing indicator
types, like aggregate or correlate.

A processing indicator takes as input the values corresponding to one or more source
indicators, that may be raw indicators or even other processing indicators.

Depending on its type, a processing indicator transforms or combines the input values.
The resulting values may also combine data providing from different collect iterations. For
example, delta(v) = current(v) - previous(v), where v is a source indicator's value.

In some cases, constant values are necessary to perform processing operations. For this
reason, JASMINe Probe provides a particular type of indicators that have a predefined
constant value, and that can be used as source indicators within processing indicators
definitions.

An output is identified by a name chosen by the user and specified in its definition.

Output names must be unique. They are used in probe definitions (each probe definition
must specify at least one output).

Several output types are provided (console, file, etc.), and new ones can be easily developed
in order to extend JASMINe Probe.

An output type defines a format and a destination for the indicator values obtained in each
collect iteration.

In order to define a probe, users have to specify:

period (it exists a default period)
indicators (at least one indicator name)
outputs (at least one output name)

targets (optional; this depends on the indicators type and definition properties)

targets raw indicators processing probe outputs (\
indicator -

JASMINe
Monitoring

Chapter 4. JASMINE
Probe artifacts creation

This chapter describes the different target, indicator and output types currently supported by
JASMINe Probe.

It presents parameters necessary to create the different JASMINe Probe artifacts: targets,
indicators, outputs and probes.

In order to define a target, users have to specify:

* name: a user defined name that uniquely identifies the target

 type: only jmx supported

» properties: defines parameters necessary to establish connection with the target
e url: IMX URL (required)
e user: only required when the jmx server is secured
e password: only required when the jmx server is secured

Examples:

<!-- the standal one jasmi ne-probe server -->
<target nane="agent0" type="jnx">
<property key="url" value="service:jmx:rm:///jndi/rm://|ocal host: 4099/
j rnmpconnect or _j asmi ne- pr obe"/ >
</target>
<l-- the jasm ne-nonitoring server -->
<target nane="jasmni ne" type="jnx">
<property key="url" value="service:jmx:rm:///jndi/rm://|ocal host: 1199/
j rmpconnect or _j asmi ne- noni toring"/>
</target>
<l-- a jonas server with secured jnx -->
<target nanme="sec_jonas" type="jnx">
<property key="url" value="service:jmx:rm:///jndi/rm://|ocal host: 1099/
j rmpconnect or _j onas"/ >
<property key="user" val ue="jonas"/>
<property key="password" val ue="jonas"/>
</target>

In order to define an indicator, users have to specify:
» name: a user defined name that uniquely identifies the indicator.
 type: one of the available types depending on the current JASMINe Probe configuration

(see ??7?). A management operation exists allowing to list the available types. The default
configuration makes available all the indicator types described in the section below.

JASMINE Probe artifacts creation

» scale: optional numeric value that defaults to 1; defines a scale for an indicator having a
number as value.

e properties: depend on the type.

4.2.1.1. Indicator types

Several raw indicator types are provided by JASMINe Probe.
Raw indicator types are characterized by the technique used to collect the monitoring data:
» jmx: use JMX to get monitoring data from MBeans registered in the target's MBean server.

» df: allows to get data about file system disk availability (in p.c.); based on the Unix df
command

» lewys: allows to get different kind of system resource parameters (disk, memory, cpu,
network); its based on lewys commands (see ..?..)

Processing indicators are characterized by the processing operation and the source
indicators:

» aggregate: aggregates a source indicator's values
» correlate: correlates several source indicators' value

» derived: get a new value from a given source indicator's value ; several derived operations
exist, as for example delta, that implements delta(v) = current(v) - previous(v), where v is
the source indicator's value

 slope: calculates slope value from two source values (delta(sl) / delta(s2) where s1 and
s2 are the two source indicators)

Constant indicators are characterized by their value and type.
The list of the available indicator types, and the description of properties to be provided when

defining an indicator of a given type, can be obtained using JASMINe Probe management
operations (see Chapter 5, JASMINe probe artifacts management).

Table 4.1. Specific properties to define for a jmx indicator

Property name Property value

mbean an OBJECT_NAME or an OBJECT_NAME pattern conform to
the MBean ObjectName Syntax. Required. Allows to determine
the MBean(s) to be polled

attr list of attribute, or attribute fragment names

target default target's name. Optional - if not specified, a target must
be specified by a probe using this indicator

An attribute fragment is a part of an attribute's value, when the attribute has a complex type.
See below for details.

The attr property determines the attributes to be read from the MBeans. If not defined, all
the attributed are read.

Examples:

JASMINE Probe artifacts creation

<i ndi cator nane="procnb" type="jnx">
<property key="nbean" val ue="java. | ang:type=Cperati ngSystent'/>
<property key="attr" val ue="Avail abl eProcessors"/>

</i ndi cat or >

<i ndi cator nane="gc_col | ection_count" type="jnx">
<property key="nbean" val ue="java. | ang: type=Gar bageCol | ector, *"/>
<property key="attr" val ue="Col | ecti onCount"/>

</i ndi cat or >

<i ndi cator nane="t hreadi ng" type="j nx">

<property key="nbean" val ue="java. | ang: type=Threadi ng"/>

<property key="attr" val ue="Total StartedThreadCount, ThreadCount, PeakThr eadCount "/ >
</i ndi cat or >

<i ndi cat or nane="nenoryHeap" type="j nx">
<property key="nbean" val ue="java.l ang: type=Menory"/>
<property key="attr" val ue="HeapMenoryUsage"/>

</i ndi cat or >

4.2.2.1. Attribute fragments

In the case of an attribute having a complex value, the user may want to poll not the whole
value, but only a part of it (a fragment), or several fragments.

To specify an attribute fragment, the user must provide a fragment name based on the nhaming
convention presented in Appendix B, Fragments naming grammar.

The fragment name contains a <base name> given by the attribute name, and a sequence
of <fragment elements> corresponding to the path from the base down to the part of attribute
user wants to be polled.

The fragment value is the part of the attribute's value corresponding to the path expressed
by the fragment name.

Let's consider for example the JVM MBean having OBJECT _NAME
java.lang:type=Memory. The attribute named HeapMemoryUsage has a complex type
(javax.management.openmbean.CompositeData). The posible key values are: commited,
used, init, max. If the user wants to poll only the value corresponding to the use key, he
specifies the fragment named HeapMemoryUsage.used as attr property value, instead of
using the "HeapMemoryUsage attribute name.

Here is the indicator definition, and some more attribute fragments examples:

<i ndi cat or name="nenoryHeapUsed" type="jnx">
<property key="nbean" val ue="java.l ang: type=Menory"/>
<property key="attr" val ue="HeapMenoryUsage. used"/ >
</'i ndi cat or >

<i ndi cator nanme="input Arg0" type="jnx">
<property key="nbean" val ue="java.l ang:type=Runtinme"/>
<property key="attr" val ue="Input Argunments[0]"/>

</'i ndi cat or >

<i ndi cat or nanme="propFi | eEncodi ng" type="j nx">
<property key="nmbean" val ue="java.l ang:type=Runtinme"/>
<property key="attr" val ue="SystenProperties[file.encoding]"/>
</'i ndi cat or >

4.2.2.2. Jmx indicator values

Let's consider a probe that has in its definition the above jmx indicator named
memoryHeapUsed. When running the probe, at each polling iteration, the indicator value
is obtained by getting from the "HeapMemoryUsage" attribute's composite data, the value
corresponding to the "used" key.

JASMINE Probe artifacts creation

What about the value obtained for another indicator, named memoryHeap, having the attr
property setto "HeapMemoryUsage" ? In this case, the indicator value is composed of several
values, one for each key. We call these values indicator results.

A jmx indicator's value is composed of more then one indicator results in the following
situations:

e several MBeans correspond to the mbean property (see indicator named
gc_collection_count in the above examples)

» more than one elements are defined by the attr property (see indicator named threading)

» one of the attributes or fragments defined in the attr property has a complex value (see
indicator named memoryHeap)

Each result is identified by a name that is generated using the fragments naming convention
presented in Appendix B, Fragments naming grammar. Each result's value has a simple type
(a Number, String or Boolean).

The following property may specify one or more device names to check:
» disk: device path names relative to /dev

When the disk property is not defined, the available space, in percentage, for all the disks
is to be obtained.

A df indicator's value is composed of more then one indicator results if several devices are
monitored.

Each result is identified by a name that is equal to the device name. Each result's value is
the used space on the device in percentage.

Examples:

<i ndi cator nane="df-sdal" type="df">
<property key="di sk" val ue="sdal"/>
</i ndi cat or >

Two properties must be defined for a lewys indicator:

» cmd: alewys command corresponding to the monitored resource type ; the possible values
are disk, memory, network, cpu and kernel

* resources: a list of resource names (see the probe-config.xml configuration file for details)

Examples:

<i ndi cator nane="| ewys-di sk" type="Iewys">

<property key="cmd" val ue="di sk"/>

<property key="resources" val ue="sdal reads issued, sdal reads nerged, sdal read
sectors,sdal read tine in ns"/>
</'i ndi cat or >

The aggregate and merge indicators definition requires:

JASMINE Probe artifacts creation

» op: the aggregate operation ; the possible values are sum, average, max and min
» source: source indicator name. The source indicator value must only have number results.

e merge: not implemented yet, its aim is to filter out some non relevant values from the
aggregation.

The value of an aggregate or merge indicator contains one result. Its value is obtained by
aggregation of the source indicator's results.

Examples:

<i ndi cator nanme="gc_col |l ection_count" type="jnx">
<property key="nbean" val ue="java.l ang: t ype=Gar bageCol | ector, *"/>
<property key="attr" val ue="Col |l ecti onCount"/>

</'i ndi cat or >

<indi cator name="total _gc_collection_count" type="aggregate">
<property key="op" val ue="sunl'/>

<sour ce>gc_col | ecti on_count </ sour ce>
</'i ndi cat or >

The correlate indicator definition requires:

» op: the correlate operation ; the possible values are add, sub, mul, div, percent
» sources: source indicator names. Source indicator values must be numbers.
Current limitation: all the source indicators values must contain only one result.
Examples:

 type: one of the followings are accepted long, int, float, double

» value: the constant value

<i ndi cat or name="nenoryHeapUsed" type="j nx">
<property key="nbean" val ue="java. | ang: type=Menory"/ >
<property key="attr" val ue="HeapMenoryUsage. used"/ >
</i ndi cat or >

<i ndi cat or nanme="nenoryHeapConmi tted" type="jnx">
<property key="nbean" val ue="java. | ang: type=Menory"/ >
<property key="attr" val ue="HeapMenoryUsage. conmitted"/>
</i ndi cat or >

<i ndi cat or nanme="nenoryHeapUsedPercent" type="correl ate">
<property key="op" val ue="percent"/>
<sour ce>nmenor yHeapUsed</ sour ce>
<sour ce>nmenor yHeapConmi t t ed</ sour ce>

</'i ndi cat or >

The derived indicator definition requires:

» op: the derived operation ; the possible values are prev, delta, rate, having the following
meanings:

e prev: at each iteration, return the results corresponding to the previous iteration,

10

JASMINE Probe artifacts creation

» delta: at each iteration and each result, return the value corresponding to the current
iteration, minus the value corresponding to the previous iteration,

 rate: at each iteration and for each result, return the delta(v)/delta(t),

e sources: source indicator name. The source indicator value may be composed of several
results, but the result values must only be numbers.

The value of an derived indicator is composed of as many results as the source indicator's
value. Each result in the derived indicator value is obtained by applying the derived operation
on one result in the source indicator value.

Examples:

<indi cator nanme="total StartedThreadCount" type="jnx">
<property key="nmbean" val ue="java. |l ang: type=Threadi ng"/>
<property key="attr" val ue="Total StartedThreadCount"/>
</i ndi cat or >

<indi cator nanme="del taStartedThreadCount" type="derived">
<property key="op" val ue="delta"/>
<sour ce>t ot al St art edThr eadCount </ sour ce>

</indi cat or>

Two sources must be defined for a slope indicator, both corresponding to a source indicator.
The first one for the numerator, and the second one for the denominator.
The slope value corresponds to (delta(sl) / delta(s2)).

Current limitation: both source indicators must have values composed of only one result.

The following properties must be specified:
» type: one of the followings are accepted long, int, float, double
» value: the constant value

Example:

<i ndi cator nane="1K" type="constant">
<property key="type" value="int"/>
<property key="val ue" val ue="1000000"/>
</'i ndi cat or >

In order to define an output, users have to specify:
* name: a user defined name that uniquely identifies the output.

» type: one of the available types depending on the current JASMINe Probe configuration
(see ??7?). A management operation exists allowing to list the available types. The default
configuration makes available all the output types described in the sections below.

11

JASMINE Probe artifacts creation

» default: if true, this output will be part of the default output list for probes with no explicitly
defined output. Default value is false

» properties that depend on the type.

4.3.1.1. Output types

» console: outputs the indicator values to the console terminal,
« file: saves the indicator values into a file,

* mule: the indicator values are published into a JASMINe Monitor server's event bus
(currently based on Mule).

The list of the available output types, and the description of properties to be provided when
defining an output of a given type, can be obtained using JASMINe Probe management
operations (see Chapter 5, JASMINe probe artifacts management).

Users only have to provide a name to define a console output. No other parameters are
required. The name can then be used in probes' definition to specify that indicator values are
to be printed on the console terminal.

Examples:

<out put nanme="stdi 0" type="console">
</ out put >

One property named path has to be defined for a file output. Its value gives the relative
name, or a complete path for a file in which indicator values have to be saved.

Examples:

<out put name="| ogl" type="file">
<property key="path" val ue="/tnp/logl.csv"/>
</ out put >

One property named url has to be defined for a mule output. Its value gives the address of
the JASMINe Monitor server's event bus.

Examples:

<out put name="eventswi tch" type="nul e">
<property key="url" value="tcp://|ocal host: 18564/ JProbe"/ >
</ out put >

In order to define a probe, users can specify:

* id: the probe name (must be unique ; generated by JASMINe Probe if not specified by
the user).

12

JASMINE Probe artifacts creation

» period: defines the execution period. The default value is 10 sec.
* indicators: list of indicators. At least one indicator name should be specified.
» outputs: list of outputs. At least one output name should be specified.

 targets: list of targets. Optional. If defined, currently only one target is allowed. This target
has priority over those specified in the jmx indicators' definition.

« start: boolean that specifies, if true, to immediately start the probe after creation completes.
Optional (by default the probe start is a separate operation).

JASMINe Probe artifacts can be dynamically created using the tools presented in see
Chapter 8, Tools.

An alternative approach is to provide definitions in a configuration file named probe-
config.xml. Its location is the conf directory within the JASMINe Probe installation directory.
This file is read at JASMINe Probe start-up, and the defined artifacts are created. Probes
can even be started in case their definition specifies status="started".

Once JASMINe Probe started, management operations can be invoked to create new
artifacts and to manage the existing ones.

All the JASMINe probe artifacts existing at a moment of time may be saved in the JASMINe
probe configuration file. Moreover, a probe-config.xml file can be explicitly loaded in order to
create the necessary JASMINe Probe artifacts.

Here is a probe-config.xml snippet containing definitions for JASMINe Probe artifacts
depicted in Chapter 3, Definitions section.

<target name="t1" type="jnx"/>
<property key="url" value="service:jm:rm:///jndi/rm://host1:1099/
j rnmpconnect or _j onas"/ >
</target>
<target name="t2" type="jnx"/>
<property key="url" value="service:jm:rm:///jndi/rm://host2:1099/
j rnmpconnect or _j onas"/ >
</target>
<i ndi cator nane="i1l" type="jnx"/>
<property key="nbean" val ue="java.l ang: type=Menory"/ >
<property key="attr" val ue="HeapMenoryUsage. used"/ >
<property key="target" value="t1"/>
</'i ndi cat or >
<i ndi cator nane="i2" type="jnx"/>
<property key="nbean" val ue="java.l ang: type=Menory"/ >
<property key="attr" val ue="HeapMenoryUsage. used"/ >
<property key="target" value="t2"/>
</'i ndi cat or >
<i ndi cator nane="i3" type="correlate"/>
<property key="op" val ue="sunl'/>
<property key="sources" value="i1,i2"/>
</'i ndi cat or >
<out put name="o0l1" type="file"/>
<property key="path" value="/tnmp/f1"/>
</ out put >
<out put name="02" type="nmnule">
<property key="url" value="tcp://|ocal host: 18564/ JProbe"/ >
</ out put >
<probe id="p" period="5" status="started">
<i ndi cat or >i 3</i ndi cat or >
<out put >01</ out put >
<out put >02</ out put >
</ pr obe>

13

Chapter 5. JASMINe
probe artifacts
management

This chapter presents the operations allowing to manage the created targets, indicators,
outputs and probes.

Shows all the defined targets and their definitions.

Used to remove target definitions. This operation fails if a target to be removed is used by
a running probe.

Show the available indicator types.

Allows to show the specific properties that need to be specified for a given indicator type,
when creating an indicator of that type.

Show all the defined indicators and their definitions. Its possible to list the indicators of a
given type only.

Remove indicators definitions. This operation fails if a indicator to be removed is used by a
running probe.

Change an indicator's definition (to redefine the indicator's type and/or properties). The
parameters that are not redefined keep their initial values.

If the indicator to be changed is used by a running probe, the probe is stopped, and execution
restarted after the change completed.

14

JASMINe probe artifacts management

Show the available output types.

Allows to show the specific properties that need to be specified for a given output type, when
creating an output of that type.

Show all the defined outputs and their definitions. Its possible to list the outputs of a given
type only.

Remove outputs definitions. This operation fails if a output to be removed is used by a running
probe.

Change an output's definition. If the output to be changed is used by a running probe, the
probe is stopped, and execution restarted after the change completed.

Show all the defined probes and their definitions.

Remove probes definitions.

Change a probe's definition. If the probe is running, the probe is stopped, and execution
restarted after the change completed. The operation allows to redefine any of the probe's
parameters. The parameters that are not redefined keep their initial values. For example, the
user may define a new target for the probe and keep the rest of the definition unchanged.

15

Chapter 6. Running
probes

JASMINe Probe provides operations to start and stop a probe's execution any number of
times.

Once started, the probe’s status change from STOPPED to RUNNING if no error occurs, or
to FAILED otherwise.

Reasons that may lead to an error state may be a bad JASMINe probe artifact definition,
or some problem related to polling the specified resources. For example, when using a jmx
indicator, the jmx target may be unreachable. In this case, definitions must be checked, and
verify urls and/or resource names.

Note that list probes operation allows to see the probes' status.

A RUNNING probe periodically collects the values corresponding to all the indicators
specified in its definition. All the obtained values are passed to the outputs specified in the
probe's definition. Each output publishes the values in a specific format on a given support
(console, file, bus, etc.). See Section 6.3, “Output formats for indicator values”.

At each polling iteration, several values are collected because one or more of the following
reasons:

» Several indicators are specified by the probe's definition.

» Several resources are polled for an indicator. For example, if a jmx indicator is used,
several MBeans or several attributes or attribute fragments may be specified in the
indicator's definition.

* A polled resource may have a complex value. In this case, the indicator value is
decomposed in fragments having simple values (Number, String, Boolean), also called
simple results.

The JASMINe Probe APl defines data types (JasminelndicatorValue and
JasmineSimpleResult classes) allowing to construct a data structure for each indicator value
obtained at each iteration.

Each indicator value is identified by the indicator name. Moreover, each simple result that is
composing an indicator value is identified by a result name that is generated by JASMINe
Probe based on the fragments naming convention (see Appendix B, Fragments naming
grammar). In most of the cases, the indicator name + the result names are sufficient to
uniquely distinguish the obtained results. In some particular case, other metadata associated
to the results make possible the distinction.

public class Jasm nel ndi catorVal ue i npl ements Serializable {

16

Running probes

/**

* Indi cator Nane.
*/

private String nane;

/**

* Target nane

*/

private String target;

/**

* Addi tional Metadata, depending on the indicator type.
*/

private Map netadata;

| **

* Collection of results
* We have a Coll ection because indicators may have conpl ex val ues.
*/

private Collection<Jasm neSi ngl eResul t > val ues;

public abstract class Jasm neSingleResult inplenments Serializable {

/**

* Resul t Nane.

*/

private String nane;

/**

* Tinestanp of the nmeasure in mllis

*/

private |long tinestanp;

/**

* List of properties associated to this value.
* Their nane depend on the Col | ector type.
*/

private Map properties;

public abstract Object getValue();

public abstract void setVal ue(Object val ue);

Several sub-classes are provided corresponding to the supported result types:
JasmineSingleNumberResult, JasmineSingleStringResult, JasmineSingleBooleanResult
and JasmineSingleObjectNameResult.

public class Jasm neSi ngl eNunber Resul t extends Jasm neSi ngl eResult {

| **

* Numeric value of this result

The abstract class Nunber is the superclass of classes
Bi gDeci mal , Bi gl nt eger,

Byte, Double, Float,

I nteger, Long, and Short.
/

private Nunber val ue;

*
*
*
*
*
*

public Nunmber getValue() {
return val ue;

}

public void setVal ue(Object value) {
this.value = (Nunber) val ue;
}
}

17

Running probes

A JasminelndicatorValue instance corresponding to a jmx indicator is initialized with the
following values:

* name = the name provided by the indicator's definition ;

» target = the target name provided by the indicator's definition, except if the probe's
definition specifies a target. In this latter case the probe's definition take precedence, and
provides the target name.

» the metadata is composed by the following properties:
« domain = the management domain name to which belongs the target jmx server,

« server = the target server name, when the monitored target in a Java EE Server like
JONAS, or a WEB Server like Jetty or Tomcat. Otherwise, the default value is "unknown",

e url = the jmx url from the target definition.
A JasmineSingleResult instance is initialized with the following values:
* name = an attribute name if it has a simple type, an attribute fragment name otherwise,
» value = the attribute's value if its simple, or the fragment's value otherwise,
» timestamp = the measurement time,
 the properties is composed by:

* mbean =the OBJECT_NAME corresponding to the MBean containing the read attribute.

A JasminelndicatorValue instance corresponding to a df indicator is initialised with the
following values:

* name = the name provided by the indicator's definition,
 target = the host name,
» the metadata is composed by the following properties:
« domain = the management domain name to which belongs the target jmx server,

« server = the target server name, when the monitored target in a Java EE Server like
JONAS, or a WEB Server like Jetty or Tomcat. Otherwise, the default value is "unknown".

A JasmineSingleResult instance is initilaised with the following values:
* name = a device name,

» value = free space on that device in percentage,

» timestamp = the measurement time,

* properties not used.

18

Running probes

A JasminelndicatorValue instance corresponding to a aggregate or merge indicator is
initialised with the following values:

» name = the name provided by the indicator's definition,
» target = the target in the source JasminelndicatorValue,

» the metadata is composed by the same elements that compose the metadata in the
source JasminelndicatorValue.

A JasmineSingleResult instance is initilaised with the following values:
e name = empty String,

» value = the values obtained by the aggregation of the values corresponding to the source
indicator's results,

» timestamp = the biggest timestamp from the source indicator's results,

e properties contains all the elements composing the properties from all the source
JasmineSingleResults.

The value of a correlate indicator is composed of one result. Its value is obtained by applying
the correlate operation to the source result values.

A JasminelndicatorValue instance corresponding to a correlate indicator is initialised with
the following values:

» name = the name provided by the indicator's definition
e target =

« if all the source indicators have the same target, use the target in any of source
JasminelndicatorValues.

e misc otherwise

» the metadata: look for "domain" and "server" keys in the sourceJasminelndicatorValues.
If all the values found for "domain" are are the same, a "domain" element having the
found value is inserted in metadata. Otherwise, a "domain" element having misc value is
inserted. A similar treatment is done for the "server" metadata.

A JasmineSingleResult instance is initilaised with the following values:

* name = empty String

 value = the values obtained by applying the correlate operation over the values from each
source's JasmineSingleResult unique element.

» timestamp = the biggest timestamp from the source indicators' results
» properties: look for "mbean" property name in the sourceJasmineSingleResults. If all

the found values are the same, a "mbean" element having the found value is inserted in
properties. Otherwise, a "mbean" element having misc value is inserted.

19

Running probes

The value of an derived indicator is composed of as many results as the source indicator's
value. Each result in the derived indicator value is obtained by applying the derived operation
on one result in the source indicator value.

A JasminelndicatorValue instance corresponding to a derived indicator is initialised with the
following values:

» name = the name provided by the indicator's definition
 target = the target in the source JasminelndicatorValue

» the metadata is composed by the same elements that compose the metadata in the
source JasminelndicatorValue

A JasmineSingleResult instance is initialised with the following values:
* name = empty String

» value =the values obtained by transforming the source indicator's result using the specified
operation

» timestamp = the timestamp from the source JasmineSingleResult

» properties containes all the elements composing the properties from all the source
JasmineSingleResults

The result value is obtained as follows: delta(vhumerator) / delta(vdenominator), where
vnumerator is the value of the numerator's result and vdenominator is the value of the
denumerator's result.

At each iteration, the probe collects the values corresponding to each indicator specified in
its definition.

For each indicator, one or more results are published by the outputs. They correspond to
JasmineSingleResult instances referenced by the JasminelndicatorValue instance (by its
values attribute).

Each result is published in a format that depends on the output type.

The examples below presents the indicator values for a running a probe p2indic having two
indicators, used-memory which is a jmx indicator, and a df indicator named dfi.

<probe id="p2indic" period="20">
<i ndi cat or >used- menor y</i ndi cat or >
<i ndi cat or >df i </i ndi cat or >
<out put >st di o</ out put >
<out put >l og</ out put >
<out put >j nx/ out put >
</ pr obe>
<i ndi cat or name="used- menory" type="jnx"/>
<property key="nbean" val ue="java. | ang: type=Menory"/>
<property key="attr" val ue="HeapMenoryUsage. used"/ >
<property key="target" val ue="agent0"/>
</'i ndi cat or >

20

Running probes

<indi cator name="dfi" type="df"/>
<out put nanme="stdi 0" type="console"/>
<out put nanme="|og" type="file"/>
<property key="path" value="/tnmp/f1"/>
</ out put >
<out put name="jnm' type="mnule">
<property key="url" value="tcp://|ocal host: 18564/ JProbe"/ >
</ out put >
<target nanme="agent0" type="jnx"/>
<property key="url" value="service:jm:rm:///jndi/rm://]ocal host: 4099/
j rnmpconnect or _j asm ne- probe"/ >
</target>

For each result a line is printed to the console terminal. It contains elements separated by
the ;" character.

probeNane; ti me; dat e; t ar get Nanme; nane; r esul t Val ue; pr ops

» probeName: the name provided by the probe definition, or generated by JASMINe Probe
if no name provided

e time: timestamp in JasmineSingleResult
» date: time having "yyyy/MM/dd HH:mm:ss" format

» targetName: target in JasminelndicatorValue. Note that when no explicit target artifact is
required, the targetName is replaced by the host name.

* name:
« indicatorName in the following cases:
Raw indicators:

the indicator defines one value to poll and the value has a simple type

Processing indicators:
the indicator produces one simple type value
¢ indicatorName.resultName when several simple values are obtained for the indicator

Where indicatorName is provided by name in JasminelndicatorValue, and resultName
is provided by name in JasmineSingleResult

» resultValue: value in JasmineSingleResult

» props: a sequence of propName=propValue elements corresponding to metadata in
JasminelndicatorValue and properties inJasmineSingleResult.

Example below presents values published for p2indic probe. This probe has two indicators,
a jmx indicator named used-memory, and a df indicator named dfi.

p2i ndi c; 1327676884394; 2012/ 01/ 27 16: 08: 04; agent 0; used-
nmenory; 79207464; domai n=j onas; server =j asm ne-probe; url =service:jm:rm:///jndi/rm://
| ocal host: 4099/ j r npconnect or _j asmi ne- pr obe; nbean=j ava. | ang: t ype=Menory

\ /\ /\ I N___ 1\ /\ /

\

21

Running probes

pr obeName time date target Name nane resul t Val ue
props conposed by domain and server JIV properties values and nbean JSR property
val ue

i ndi cat or Name

p2i ndi ¢c; 1327678833790; 2012/ 01/ 27
16:40: 33; bi kini.frec.bull.fr;dfi.sdal; 60; domai n=j onas; server =j asm ne- probe
p2i ndi c; 1327678833790; 2012/ 01/ 27
16:40: 33; bi kini.frec.bull.fr;dfi.sda4;59; domai n=j onas; server =j asm ne- probe
\ !\ !\ !\ !\ I _J/
\ /
| | | | | |
|
pr obeName time date t ar get Nane name resultVal ue
props conposed by domain and server JIV properties

i ndi cat or Nane. r esul t Nane

The elements composing the props can be used to get information about the target and
the resource being monitored. Moreover, in some situation it allows to distinguish between
different values having the same name. For example, suppose that the p2indic probe
contains only one jmx indicator named used-memory. Suppose that the probe specifies two
targets named t1 and t2. The two values are published having the same name but different
targetNames, and possible different server properties.

Another typical jmx indicator example is an indicator defining a mbean property having as
value a pattern that corresponds to several MBeans in the target server. In this case, several
values are published having the same name but different mbean property.

For each result a line is printed to the file. It contains elements separated by the ";" character.

time; dat e; t ar get Name; props; resul t Val ue

* time: timestamp in JasmineSingleResult
» date: time having "yyyy/MM/dd HH:mm:ss" format

» targetName: target in JasminelndicatorValue. Note that when no explicit target artifact is
required, the targetName is replaced by the host name.

* props: a sequence of property values from metadata in JasminelndicatorValue
(the ones corresponding to domain and server) and the mbean property value
inJasmineSingleResult's properties, combined with the indicator name and result name
(mbean:indicatorName or mbean:indicatorName.resultName).

» resultValue: value in JasmineSingleResult

Example

1327676884394; 2012/ 01/ 27 16: 08: 04; agent 0; j onas; j asm ne-
probe; java. |l ang: t ype=Menory: used- menory; 79207464
\ !\ IN__]
\ /I \ /
| | | |
|
time date t ar get Nane props
resul t Val ue

22

Running probes

dommi n; server; mbean: i ndi cat or Nane

For each result 3 lines are published to the JASMINe Monitoring event bus. The first line
only contains a format version number. The second contains a header that describes the
elements of the third line. The header elements and the data elements from the third line are
separated by the ";" character. Here are the header and data lines format:

cmdi d; ti me; domai n; server; snane; nbean; nanme
pr obeNane; dat e; domai nNane; ser ver Nane; t ar get Nane; nbeanNane; val ue

23

Chapter 7. Advanced
Configuration

Installing JASMINe Probe (unzip the provided archive) creates an installation directory
containing a pre-configured JOnAS server and the JASMINe Probe's application modules.

The sections below describe the JOnAS configuration parameters that could be necessary
to change in a production environment. It also details how to change the JASMINe Probe
application's configuration.

JASMINe Probe application runs within OSGi based JOnAS application server. Complete
documentation on JOnAS server configuration can be found in http:/jonas.ow2.org/
JONAS 5 3 0 _Mb5/doc/doc-en/html/configuration_guide.html.

The configuration provided for JASMINe Probe corresponds to a 'micro’ server: only a few
services are activated, like registry, security and jmx mandatory services, and a deployment
service called depmonitor.

The jmx service provides an MBean server that has registered MBeans for JVM
and JOnAS management. In addition, a JASMINe Probe registered MBean having
OBJECT_NAME jasmine:dest=probe-manager exposes operations for JASMINe Probe
artifacts management. This MBean is used by the JASMINe Probe's JMX Client Section 8.2,
“JProbe Client”.

In order to allow remote access to the MBean server, a JMX RMI connector is available
at the platform start-up. By default, the connector's URL is service:jmx:rmi:///jndi/rmi://
localhost:4098/jrmpconnector_jasmine-probe. The connector's address changes if one of the
following JOnAS configuration parameters are modified:

» The JONnAS server name. By default i's set to jasmine-probe in the jasmine-probe.sh (or
jasmine-probe.bat) script (-n option for jonas start)

 The JASMINe Probe's host name can be used instead of localhost to allow execution of
JMX Client on a remote host.

* RMI port number is set to 4098 by default (see carol.jrmp.url in carol.properties file within
conf directory).

Remote management may require security. The jmx service can be secured, for example,
with password authentication. See jonas.properties file within conf directory for details.

The JASMINe Probe installation directory contains the following configuration elements

* The probe-config.xml file containing JASMINe Probe artifacts definitions, within the conf
directory.

» The deploy directory containing a deployment plan for JASMINe Probe modules'
deployment. Some of these modules implement different type of indicators and outputs.
The modules that implement indicators correspond to maven artifacts prefixed by jprobe-

24

http://jonas.ow2.org/JONAS_5_3_0_M5/doc/doc-en/html/configuration_guide.html
http://jonas.ow2.org/JONAS_5_3_0_M5/doc/doc-en/html/configuration_guide.html

Advanced Configuration

collector. The modules that implement outputs correspond to maven artifacts prefixed
by jprobe-outer. All these modules are optional, user may remove the unnecessary
ones, or even replace them by new modules corresponding to particular implementations
corresponding to its needs.

* repositories containing a local maven repository with modules that were mentioned above.

Note that JASMINe Probe modules could be deployed on an already installed JOnAS server.

25

Chapter 8. Tools

Different tools are provided by JASMINe Probe and by the JASMINe Monitoring Console for
the creation, management and execution of probes.

There are two kind of JASMINe Probe tools: a command line tool and a Java client based
on JMX.

As presented in the Introduction (Chapter 1, Introduction), JASMINe Probe is based on OSGi
and currently uses the Apache Felix OSGi implementation. The command line tool is based
on, and extends the shell integrated in the Felix OSGi framework.

The second JASMINe Probe tool is a Java program interacting with to the JASMINe Probe
application via JMX. This is possible because the Felix framework contains a JMX service in
which JASMINe Probe registers a MBean exposing all the operations that create, manage
and run probes.

Another tool is a graphical module belonging to the JASMINe Monitoring's console named
JASMIne Eo0S. This tool is used when running JASMINe Probe application inside the
JASMINe Monitoring platform.

After starting the JASMINe Probe's OSGi platform with the provided jasmine-probe shell
command, the Felix prompt -> permits user to type a Felix command. Get list of all the
commands by typing the help command. If you need a description of a particular command,
type help commandName.

$ jasmine-probe.sh start -tu
> hel p
arch

i ndi cat or - XXX
out up- XXX
pr obe- XXX

tar get - XXX

Commands allowing to manage JASMINe Probe artifacts are prefixed by indicator- output-
probe- and target-.

After typing the help command, you can identify target management commands, the
commands starting with target-: target-create, target-list and target-remove.

Additionally to create, remove and list operations you may change an indicator definition
using the indicator-change command. Moreover, the indicator-types command allows to list
all the indicator types available on the platform.

In order to determine the properties that must be defined for an indicator of a given type, use
indicator-properties command.

26

Tools

Similar to indicators management, but use output- prefix.

Probe management commands' name is prefixed by probe-. Additionally to create, remove,
list and change operations, commands are provided to start or stop a probe, or all probes.

In order to save all the current artifact definitions, use the probe-config-save command.
Definitions can be loaded from an updated probe-config.xml file using the probe-config-load
command.

Use the jprobe-client.jar client application contained in JASMINe Probe's installation
directory. To get help, simply type

$ java -jar jprobe-client.jar

The client connects to the JMX server running within JASMINe Probe platform (the JOnAS
server). By default, the address used to establish connection is service:jmx:rmi:///jndi/
rmi://localhost:4098/irmpconnector_jasmine-probe. The addressed could be changed if the
JONAS server configuration changed. The following options allow to take into account JOnAS
configuration changes:

¢ -server JOnAS server name
* -host host name

e -port JRMP RMI port number

This is a graphical tool allowing to create and manage JASMINe Probe artifacts, and to
start and stop probes. In order to use this tool, its necessary to start JASMINe Probe
modules inside a JASMINe Monitoring server. This is the default case when starting JASMINe
Monitoring version 1.4.

27

Appendix A. Probe
configuration schema

Here is the grammar of the probe configuration XML file:

<xsd: schenma
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
el ement For nDef aul t =" qual i fi ed"
t ar get Nanmespace="or g. ow2. j asmi ne. pr obe: pr obe- confi g"
xm ns: pec="org. ow2. j asni ne. pr obe: pr obe-confi g">

<xsd: el ement name="probe-config">
<l-- Use an inner type to avoid that unmarshall return a JAXBEl enent -->
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="out put” m nCccurs="0" maxQccur s="unbounded"
type="pec: out put" />
<xsd: el ement name="target" m nCccurs="0" maxQccurs="unbounded"
type="pec:target" />
<xsd: el enent name="indi cator” m nCccurs="0" maxQOccurs="unbounded"
type="pec:indicator" />
<xsd: el ement nane="probe" m nCccurs="0" maxCccur s="unbounded"
type="pec: probe" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conpl exType nane="out put ">
<xsd: sequence>
<xsd: el ement name="property" m nQccurs="0" maxCccurs="unbounded"
type="pec: proptype" />
</ xsd: sequence>
<xsd:attribute name="nanme" type="xsd:token" use="required"/>
<xsd:attribute name="type" type="xsd:token" use="required" />
<xsd:attribute name="default" type="xsd: bool ean" default="fal se" />
</ xsd: conpl exType>

<xsd: conpl exType nanme="t ar get">
<xsd: sequence>
<xsd: el ement name="property" m nQccurs="0" maxCccurs="unbounded"
type="pec: proptype" />
</ xsd: sequence>
<xsd:attribute name="nanme" type="xsd:token" use="required"/>
<xsd:attribute name="type" type="xsd:token" default="jnmx" />
</ xsd: conpl exType>

<xsd: conpl exType nane="indi cat or">
<xsd: sequence>
<xsd: el ement name="property" m nQccurs="0" maxCccurs="unbounded"
type="pec: proptype" />
<xsd: el enent name="source" mi nCccurs="0" maxCccur s="unbounded"
type="xsd: t oken" />
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:token" use="required" />
<xsd:attribute name="type" type="xsd:token" use="required" />
<xsd:attribute name="scal e" type="xsd:integer" default="1" />
</ xsd: conpl exType>

<xsd: conpl exType nane="probe">
<xsd: sequence>
<xsd: el ement name="out put” m nCccurs="0" maxCQccur s="unbounded"
type="xsd: t oken" />
<xsd: el enent name="indi cator” m nCccurs="1" maxQccurs="unbounded"
type="xsd: t oken" />
<xsd: el ement name="target" m nCccurs="0" maxQccurs="unbounded"
type="xsd: t oken" />
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:token" use="required"/>
<xsd:attribute name="period" type="xsd:integer" default="30" />
<xsd:attribute name="status" type="pec:statusType" />
</ xsd: conpl exType>

<xsd: conpl exType nane="proptype">

Probe configuration schema

<xsd:attribute name="key" />
<xsd:attribute name="val ue" />
</ xsd: conpl exType>

<xsd: si npl eType nanme="stat usType">
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="st opped"/ >
<xsd: enuneration val ue="started"/>
</xsd:restriction>
</ xsd: si npl eType>

</ xsd: schema>

29

Appendix B. Fragments
naming grammar

Here is the grammar of the fragments naming use for the MBean attribute names and
indicator value names.

<fragment name> ::= <base nane> <fragment el enents>

<base name> :: = <identifier>

<fragment elenents> ::= <fragnent element> | <fragnent el ement> <fragnent el ements>
<fragment elenent> ::= <key elenment> | <index expression> | <list index>

<key element> ::= "." <key nane>

<key nane> ::= <identifier>

<i ndex expression> ::= "[" <indexes> "]"

<i ndexes> ::= <index> | <index> "," <indexes>

<index>:: = <identifier>| <integer>

<list index> ::= <i nt eger >

30

	JASMINe Probe
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. How to use JASMINe Probe
	2.1. Where to install JASMINe Probe
	2.2. Installing JASMINe Probe
	2.3. Running JASMINe Probe in standalone mode

	Chapter 3. Definitions
	3.1. Main Concepts
	3.2. Targets
	3.3. Indicators
	3.4. Outputs
	3.5. Probes

	Chapter 4. JASMINE Probe artifacts creation
	4.1. Target Definition
	4.2. Indicator definition
	4.2.1. Create an indicator
	4.2.1.1. Indicator types

	4.2.2. Define a jmx indicator
	4.2.2.1. Attribute fragments
	4.2.2.2. Jmx indicator values

	4.2.3. Define a df indicator
	4.2.4. Define a lewys indicator
	4.2.5. Define an aggregate (or merge) indicator
	4.2.6. Define a correlate indicator
	4.2.7. Define a derived indicator
	4.2.8. Define a slope indicator
	4.2.9. Define a constant indicator

	4.3. Output definition
	4.3.1. Create an output
	4.3.1.1. Output types

	4.3.2. Define a console output
	4.3.3. Define a file output
	4.3.4. Define a mule output

	4.4. Probe definition
	4.5. Configuration file for JASMINe Probe artifacts

	Chapter 5. JASMINe probe artifacts management
	5.1. Target management
	5.1.1. List targets
	5.1.2. Remove targets

	5.2. Indicator management
	5.2.1. List indicator types
	5.2.2. Show properties for and indicator type
	5.2.3. List indicators
	5.2.4. Remove indicators
	5.2.5. Change an indicator

	5.3. Output management
	5.3.1. List output types
	5.3.2. Show properties for and output type
	5.3.3. List outputs
	5.3.4. Remove outputs
	5.3.5. Change an output

	5.4. Probe management
	5.4.1. List probes
	5.4.2. Remove probes
	5.4.3. Change a probe

	Chapter 6. Running probes
	6.1. Interfaces for indicator values
	6.1.1. JasmineIndicatorValue
	6.1.2. JasmineSingleResult

	6.2. Indicator values
	6.2.1. Jmx indicator values
	6.2.2. Df indicator values
	6.2.3. Aggregate and merge indicator values
	6.2.4. Correlate indicator values
	6.2.5. Derived indicator values
	6.2.6. Slope indicator values

	6.3. Output formats for indicator values
	6.3.1. Console output format
	6.3.2. File output format
	6.3.3. Mule output format

	Chapter 7. Advanced Configuration
	7.1. JASMINe Probe's platform configuration
	7.2. JASMINe Probe configuration

	Chapter 8. Tools
	8.1. Felix Shell Commands
	8.1.1. Target management
	8.1.2. Indicator management
	8.1.3. Output management
	8.1.4. Probe management
	8.1.5. Configuration management

	8.2. JProbe Client
	8.3. Probe Manager

	Appendix A. Probe configuration schema
	Appendix B. Fragments naming grammar

