
Kerneos

User Guide

v2.0

Kerneos: User Guide
by

Publication date Id
Copyright © 2011 Bull SAS

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://
creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way Stanford, California 94305
USA

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

iii

Table of Contents
1. Introduction .. 1

1.1. Why Kerneos ? .. 1
1.2. Kerneos 2 features .. 1

2. Global Design .. 2
2.1. Context of Use .. 2
2.2. Console Modularity .. 2

2.2.1. OSGi .. 2
2.2.2. Flex ... 2

2.3. General Architecture .. 2
2.4. GraniteDS ... 3

2.4.1. GraniteDS architecture .. 3
2.4.2. Detail of an Operation ... 5
2.4.3. GraniteDS OSGi ... 5

iv

List of Figures
2.1. JASMINe EoS architecture ... 3
2.2. GraniteDS architecture ... 4
2.3. Comparison between GraniteDS and GraniteDS OSGi ... 5

1

Chapter 1. Introduction
1.1. Why Kerneos ?

Kerneos is a WEB 2.0 project based on the Flex technology. The main goal of Kerneos is
to build applications where Flex® modules can be integrated. It is used mainly to build the
Flex® consoles of Jasmine Monitoring, JOnAS and Easybeans.

The kerneos component is the kernel of modules integrated in the Jasmine EoS console.
Kerneos allows to:

• Easily integrate Flex modules, HTML pages and link to other Web pages.

• Group modules in common directories

• Have common style in modules

• Reuse modules like for example login or log.

Kerneos is the common core of all modules. It manages modules like applications and give
them to users by setting icones on the desk, accessible with a web navigator.

A Kerneos module is composed of two parts: A client part, usually written in Flex®, and a
server part, usually written in java.

The client part is composed of a user interface, and uses the AMF protocol to communicate
with the server part. In most cases, these functions are implemented by the server part itself,
but they can be implemented by a third party as well.

1.2. Kerneos 2 features
Kerneos 2 will improve Kerneos 1 with these capabilities:

• Security Managing. Possibility to configure roles and profiles, allowing to limit accesses
to modules and services. This is done in configuration files. A next evolution could be to
develop a graphical interface to manages the security.

• Improve the Flex® API from 3 to 4. All the kerneos modules have been ported to this new
API (Jasmine EoS, JOnAS and Easybeans)

•

2

Chapter 2. Global Design
2.1. Context of Use

The JASMINe EoS console, part of JASMINe Monitoring, is deployed in an J2EE application
server like JOnAS. Its use is bound to the application server and to the system that run it like
Windows, Linux or Mac. The console GUI is done via a web browser supporting the Flash
technology.

The goal of Kerneos is to give dynamicity to the module management, i. e. allow the loading
of modules without stopping the server. Another goal is to provide a system to ease the
development of a new Kerneos module or a new application. The first targetted application
is the JASMINe EoS console.

2.2. Console Modularity
To make the JASMINe EoS dynamic, the OSGi framework seems to be a good choice,
because it provides a specification for module lifecycle. OSGi has become a standard used
by many application servers like JOnAS, Glassfish or JBoss.

2.2.1. OSGi

OSGi reduces complexity by providing a modular architecture for today's large-scale
distributed systems as well as small, embedded applications. Building systems from in-
house and off-the-shelf modules significantly reduces complexity and thus development and
maintenance expenses. The OSGi programming model realizes the promise of component-
based systems.

2.2.2. Flex

In order to get a dynamic management of modules inside JASMINe EoS console, the
framework used to communicate between the client part and the server part must be able
to manage its configuration dynamically.

Kerneos uses GraniteDS to allow communication between Flex modules and remote objects.

2.3. General Architecture
JASMINe EoS is composed of modules and its Kerneos console that manages the lifecycle of
the modules. As shown on the following picture, each module is a separate archive composed
of a client part (Flex) and a server part (java). Communication between the two parts is
achieved by the GraniteDS framework. The data flow format is AMF, used to swap data
between Flash and java.

Global Design

3

Figure 2.1. JASMINe EoS architecture

2.4. GraniteDS
Granite Data Service is a framework used to develop and deploy Rich Internet Applications
(RIA) based on Flex and JavaEE. GraniteDS is an open source solution under LGPL2 licence.
It is an alternative to the Adobe solution: BlazeDS.

2.4.1. GraniteDS architecture

To understand how GraniteDS works, it is important to understand all the objects implied.

Global Design

4

Figure 2.2. GraniteDS architecture

Adapter Allow to define a new Object that can be used with a Destination
to fill a particular need.

Destination This object describes the different properties associated to the
Destination like the class name, it belong to a Service and depend
on one or more Channels.

Channel This Object can be use to communicate between the client part
and the server part. It holds a description of access type and the
URL used to communicate.

Factory Factory that will create Objects

GraniteConfig Holds the properties specific to GraniteDS.

GraniteContext Holds GraniteConfig, ServiceConfig, and information about
Context flow.

HttpGraniteContext Implementation of GraniteContext, with information about the
caches.

HttpServlet Standard interface for managing HTTP requests.

Service Aggregate Services and Adapters used for a certain type of
Message.

Global Design

5

ServiceConfig Configuration of all Channel, Factory, and Service objects.

2.4.2. Detail of an Operation
1. The servlet receives the AMF data sent by the Flex client with the Destination.

2. Data is deserialized to a Request

3. We get the Factory associated to the request

a. Search the Destination

b. Got the Factory class name

c. Look in the cache for a such Factory

d. If not found, create a new instance and put it in the cache.

4. We get the ServiceInvoker matching the Factory

a. Search Destination object

b. look for the ServiceInvoker in the cache

c. If not found, create it and put it in the cache.

5. Invoke the ServiceInvoker

6. Build a reply depending on the result of the call.

7. Serialization of the reply

8. Send back AMF data to the client

2.4.3. GraniteDS OSGi

Figure 2.3. Comparison between GraniteDS and GraniteDS OSGi

	Kerneos
	Table of Contents
	Chapter 1. Introduction
	1.1. Why Kerneos ?
	1.2. Kerneos 2 features

	Chapter 2. Global Design
	2.1. Context of Use
	2.2. Console Modularity
	2.2.1. OSGi
	2.2.2. Flex

	2.3. General Architecture
	2.4. GraniteDS
	2.4.1. GraniteDS architecture
	2.4.2. Detail of an Operation
	2.4.3. GraniteDS OSGi

