JaDOrT User Guide

JaDOrT
User Guide

Table of Contents
31.
Introduction

31.1
Purpose

31.2
System Requirements

31.3
What the tool does

31.3.1
JOnAS Versioning Service

51.3.2
Orchestration

62.
Glossary

62.1
What’s an operation?

62.2
What’s a topology?

62.3
Migration Steps

73.
Web Interface

73.1
Introduction

83.2
Step 0: Operation Selection

93.3
Step 1: Topology Initialization

113.4
Step 2: Servers Selection

123.5
Step 3: Application Selection

133.6
Step 4: Migration Execution

174.
Command line client

174.1
Goal

174.2
Usage

194.3
Script example

205.
Troubleshooting

Introduction
1.1 Purpose
 The purpose of this user guide is to provide general information and usage instructions to the future users of JASMINe Deployment Orchestration Tool.
1.2 System Requirements

For the text-based client: Any Java VM compatible with Java 5 or later

For the Web console: Any Internet Browser with Flash plug-in (compatible with Adobe Flash 9 or later)
1.3 What the tool does
1.3.1 JOnAS Versioning Service
This service has been designed for dynamic redeployment of applications, without any application downtime and without users' sessions being lost:

· Deployment of a new version of an application does not require the undeployment of any previous version.

· Users that were on a previous version keep on using that version as long as their session on that version is active (for example, as long as they have not finished buying items on the previous version of the online trade web site). This guarantees that no user data will be lost, and that if there is any problem with the new version the old version is still available instantly.

· New versions of the application can be deployed using various strategies, for instance allow testing of the new version by a small community to ensure its readiness for production.

The versioning service achieves this by adding virtual contexts to all services that provide support for versioning. To use the versioning service:

1. Enable the versioning service in jonas.properties
2. Define the Implementation-Version attribute in your deployable file's (whether war, jar or ear) MANIFEST. Note that:

· ANT, Maven as well as most IDEs can set any MANIFEST attribute automatically.
· If the archive that will be deployed is an ear, the Implementation-Version defined in the MANIFEST of the ear will be used for all archives the ear contains.

When the versioning service is enabled, application resources (web pages, EJBs, etc.) are accessed the following way:

· Each versioned application has a user (virtual) address. Each version of an application is renamed and bound to that virtual address. Each bound version has a policy (that can be changed in time in order to manage the deployment strategy):

· Private: Can only be accessed by clients that satisfy some prerequisites; for example belong to a certain IP address group or provide a certain credential.

· Reserved: Not accessible using the virtual address, therefore can only be accessed directly (using the versioned address).

· Disabled: Only accessible by clients that have been using this version in the past (until their session expires). This guarantees that users will not lose their session data during redeployment.

· Default: Version accessed by all clients that don't fit in any other policy.

· A user can access the application resource indirectly (using the virtual address) or directly (using the versioned address).

· If the user tries to access the application resource indirectly (using the virtual address), the versioning system:

· First checks if that user is defined as a user that can access a version of the application with the Private access policy. If that is the case, the user is routed to that private version of the application.

· Then checks if that user already has a session in a version of the application with the Disabled access policy. If that is the case, the user is routed to that disabled version of the application.

· If neither of these cases is true, routes the user to the version of the application with the Default access policy. If the application does not define any default version, the user will see "resource not found" message.
This can be schematized as follows:

[image: image1.png]Appication versir Appication version 2

Clients withno
or expired
session access.
the new version

Versionig
senige

nfs wih a session ents that have
on the past version Just connected

As this service allows seamless and interruption less upgrade and test of all applications, it is strongly recommended for all applications to refer version identifiers in their manifest files.
1.3.2 Orchestration
Version migration or maintenance within a set of servers (cluster or farm) must be orchestrated to ensure a good execution or a return to the initial situation. JaDOrT:

· Gives a global view about the version migration or deployment process
· Sets of servers and their members

· Applications deployed on each set

· Automates all tasks
· Lets the administrator take control of the situation at any time

· Cancel any step

· Fix any problem manually (and tell the tool to “trust her / him”).

· Persists all data in order to:

· Undo any step

· Resume a process
· Analyze the deployment:

· Errors and their causes

· Full logs in order to analyze success

· Calculate other statistics: typical errors that occur when deploying a given application or the average deploy time.
Glossary
1.4 What’s an operation?
An operation is the general term for referring to a version migration or deployment process within JaDOrT.
1.5 What’s a topology?
The migration system relies on a topology including:
· Instances of the application server

· Their configuration (cluster or farm)

· JMX Connector of the servers
1.6 Migration Steps
It is the migration execution operation; it takes place in five sub steps:
· Download New Version: the new application is sent to the application servers.

· Deploy New Version: the new application is deployed on the application servers.
· Set the New Version as Default: the policy of the new application is set to “Default”; in turn the old “Default” version of the same application becomes “Reserved”. This means that:
· Users that were on the old version of the application keep on using that version as long as their session on that version is active.
· Newly connected users will use the new version.
· Undeploy Old Version: undeploys the old version of the application, which results in the old version becoming inaccessible.
· Erase Old Version: erases the old version of the application from the application server. IMPORTANT: you can not go back to the previous step once the “erase old version” task has been initiated.
Note that if the deployed application does not have any old version present, the two last steps are ignored.
Web Interface
1.7 Introduction
The following diagram describes the Home Page of the tool:
1- Progress Step Panel: this panel indicates the current step and the overall progress.
2- Main Panel: this panel depends on the current step and allows you the user to execute tasks.
3- Button Panel: this panel is used for navigation between steps.
[image: image2.png]Create a new operation :

S —C

Resume or see details of a previous operation ¢

Name

jndiTree

Sampleversionedapplication (v1)

1.8 Operation Selection
[image: image3.png]Create a new operation :

S —C

Resume or see details of a previous operation ¢

Name

jndiTree

Sampleversionedapplication (v1)

To create a new operation, you must enter the operation name and click on “Create” button.
To resume a previous operation, simply click on the “Resume” button in the “Action” column of the table. When this button is clicked, the tool loads the operation data from the database and resumes the operation from where has been stopped. The operation then continues its execution.
To delete or abort an operation, click the “Delete” button. This deletes all data associated with that operation (including all deployment logs).
NB: A previous operation is an operation that has been started by a user in the past and maybe has not been completed yet. For all operations, all logs are persisted for later analysis.
1.9 Topology Initialization
[image: image4.png]Select a JaDOFT Server Topology XML file to upload:

Select file and upload: uUpload Cancel

Brogress:
LOADING 096

To initialize a topology the user must upload an .xml file that describes the topology (groups of servers, server info, JMX URL …).

The user must You select an xml file (1), and click on the “Upload” button (2) to load the topology.
After loading the topology the button next becomes enabled, and then you can click on it to go the next step.
Here is an example of xml topology file:
[image: image5.emf]

You will see the result of this file in the next step.

1.10 Groups Selection
In that step, JaDOrT lists the groups of servers loaded from the uploaded XML file.
[image: image6.emf]

To select the group of server on which the migration should be performed, click on the corresponding “Migrate Application” button.
NB: the “Migrate Application” button ensures a selection of servers group and the action type (migration) but does not start the migration execution. Migration execution will be started after the selection of the application in the next step.
NB: the list of applications deployed on the group of servers is not loaded from the xml topology file but rather obtained “on the fly” by asking the group of servers.
1.11 Application Migration-specific: Application Selection
[image: image7.png]Upload application to the server running JaDOrT:

Select file and upload: uUpload Cancel

LOADING 096

- or download application from 2 URL: | | [_pownload

Application detalls: Samplevarsionedapplication (version 2.0)

Details on the applications currently deployed on the selected group of servers:

The zpalication that wll b deployad is 2 new varsion of the spzlication "SsmpleversionsdAplication”

- G Click next to continue

In order to select an application, you must upload the corresponding file by either:

· Uploading it from your computer: click the “browse” button, select the archive and then click on the “upload” button to upload the archive on the server where JaDOrT is deployed.
· Downloading from a URL: If the size of the archive file is too big (the HTTP protocol can not upload files bigger than 4 MB), you can enter a URL where the file is located and click to “Load” button. That button gets the file from the entered URL and saves it on the server where JaDOrT is deployed.

To start the application migration execution, click the “Next” button in the bottom panel.
1.12 Server maintenance-specific step: Servers Selection
[image: image8.emf]

To maintain servers, you should select the set of servers by checking the check box; then you must click the “Next” Button to start the maintenance of the servers.
The user can maintain all serves in the same time, set of servers, or one by one.

1.13 Step 4: Operation Execution
1.13.1 Migration Execution

[image: image9.png]Topology Servers Application Migration End
oAy Setection Jpload Execution

Status

waiting

waiting

waiting

- G Click next to continue

[image: image10.png]Status

waiting

waiting

waiting

G Click next to continue

In the figure above, we found the following information:

1. Current global task in the migration process is: deploy new version
2. Deploy New Version task is processing on servers jonas1, jonas2, and jonas3
When all values of status column are “Waiting”, it means that the current task is successfully completed and now the user is able to click to the “Next” button to execute the next task or click on “Undo” button to undo the last task.
[image: image11.png]

The status column in the table above represents the state of a task (sub-step) execution:

· Waiting: The server is waiting for the other servers to finish. If all servers are “Waiting”, it means that the task is completed on all servers, therefore that you need to click on the “Next” button in order to execute the next task.
· Done OK: Migration has been finished on all servers. The only action you can then take is to view logs.
· Error!: A problem prevents the execution of a task.
· Running: The task is executing.
The “View Log” button pops up a window that shows all information about all executions on that server (errors and other logs).
When an error occurs, two new buttons will appear in the action column:

· Retry server: Executes the same action again on that server.
· Ignore server: Ignores the task for that server. That button is useful if the administrator has fixed the problem manually and wants to inform JaDOrT about it.
Since an old version of the same application was deployed on that server, the second step (undeploy and erase old version) is also executed.

[image: image12.png]Status

waiting

waiting

waiting

- G Click next to continue

1.13.2 Maintenance Execution
[image: image13.emf]

Command line client
1.14 Goal

The aim of the command line client is to script your deployment execution. It provides the same functionalities as the Web interface, but it will be the script that will coordinate the progress of your operation. The client can also be wrapped into any other program.
1.15 Usage

First we will describe the possible commands:
· createNewOperation {operationName} : create a new operation with operationName as name.
Prints: The Id of the created operation.
Return value: the operation id of the new operation (integer).
· getOperationsList: print the operation list.
Prints: the existing operations. For each: id, name, creation date. Each operation is separated by end of line, each record by a tab.
Return value: none.
· deleteOperation {operationId}: delete the operation with operationId id.
Prints: none
Return value: none.

· loadTopology {operationId} {filePath}: load the topology contains in the file filePath in the operation with id operationId.
Prints: none
Return value: none.

· getGroups {operationId}: print the groups of the operation with operationId id.
Prints: For each group: id, name, server list, application list. Each group is separated by end of line, each record by tabulation.
Return value: none.

· selectGroup {operationId} {groupName} {operationType}: select the servers group groupName on which the migration/maintenance will be executed.
Possible values of {operationType}:

“MIGRATE” => the migration will be executed
“MAINTAIN” => the servers maintenance will be executed
Prints: none
Return value: none.
· selectServers {operationId} {server1}…{servern} : select the servers on which the maintenance will be executed.
Prints: none
Return value: none.
· getCurrentStep {operationId}: get the current progress step for the operation with operatioId id.
Prints: Name of the current step
Return value: none.

· canGoToNextStep {operationId}: is the operation operationId ready to go to next step ?
Prints: ‘true’ or ‘false’
Return value: 1 if true, 0 if false.
· next {operationId}: to go to the next step of the operation witch has id operationId. Usefull during the deployment phase.
Prints: none
Return value: none.

· canGoToPreviousStep {operationId}: is the operation operationId ready to go to previous step ?
Prints: ‘true’ or ‘false’
Return value: 1 if true, 0 if false.
· previous {operationId}: to go to the next step of the operation operationID. Usefull during the deployment phase.
Prints: none
Return value: none.

· getServerProgressList(){operationId}: print the list of the serverProgress of the operation operationId. For each deployment: id, state, progress, server name, log, old application, new application.
Prints: For each serverProgress: id, state, progress, server name, log, old application, newt application. Each serverProgress is separated by a line break and each record by a tabulation.
Return value: none.

· getWorkerProgressList() (){operationId}: print the list of the workerProgress of the operation operationId. For each workerProgress: id, worker name, state, progress, log.
Prints: For each workerProgress: id, worker name, state, state, progress, log. Each workerProgress is separated by a line break and each record by a tabulation.
Return value: none.

· getSelectedGroup {operationId} : print the selected group of the operation operationId.
Prints: id, name, server list, application list of the selected group. Each record is separated by tabulation.
Return value: none.
· getActiveSessions {operationId}: print the number of active sessions on the old version of the application deployed via the operation operationId.
Prints: an integer.
Return value: The number of active sessions.

· restartServer {operationId} {serverId}: restart the last task on the server with id serverId. This function has to be used when the last deployment task hasn’t be successful (serverProgress state = error).
Prints: none
Return value: none.

· ignoreServer {operationId} {serverId}: ignore the last task on the server with id serverId. This function has to be used when the last deployment task hasn’t be successful (serverProgress state = error). The serverProgress state for this server will no more be in error, but the last task will not be done. Charge to the user to manually fix the problematic server.
Prints: none
Return value: none.

· checkServer {operationId} {serverId}:???
Prints: none
Return value: none.

· restartWorker {operationId} {workerId}: restart the last worker task on the worker with id workerId. This function has to be used when the last task hasn’t be successful (workerProgress state = error).
Prints: none
Return value: none.

· ignoreWorker {operationId} {workerId}: ignore the last worker task on the worker with id workerId. This function has to be used when the last task hasn’t be successful (workerProgress state = error). The workerProgress state for this worker will no more be in error, but the last task will not be done. Charge to the user to manually fix the problematic worker.
Prints: none
Return value: none.

· createApplication {operationId}{archivePath}: specify the archive to use as new application for the operation operationId. The archive is specifying by its path archivePath.
Prints: none
Return value: none.
1.16 Script example

This is just a draft example tested on Windows batch.
Example for application migration

set classpathDir=%JONAS_ROOT%\lib\client.jar;target\jadort-console-1.1.2-SNAPSHOT.jar;..\jadort-ejb\target\jadort.jar

set mainClass=org.ow2.jasmine.jadort.client.console.JadortConsole

set cmd=java -classpath %classpathDir% %mainClass%

%cmd% createNewOperation titi
rem use 1 as operationId because we are not able to put the return of the last command on a local variable
%cmd% loadTopology 1 c:\topology.xml

%cmd% getGroups 1

%cmd% selectGroup 1 "Cluster 2" “MIGRATE”
%cmd% getSelectedGroup 1

%cmd% createApplication 1 D:/application1.ear

rem Go to the first migration step : upload application on each server

%cmd% next 1

rem You have to wait for ' canGoNextToNextStep 1 == 1" (1 = true)

pause

rem Go to the next migration step : deploy the new application

%cmd% next 1
Example for server maintenance:
set classpathDir=%JONAS_ROOT%\lib\client.jar;target\jadort-console-1.1.2-SNAPSHOT.jar;..\jadort-ejb\target\jadort.jar

set mainClass=org.ow2.jasmine.jadort.client.console.JadortConsole

set cmd=java -classpath %classpathDir% %mainClass%

 %cmd% createNewOperation test
rem use 1 as operationId because we are not able to put the return of the last command on a local variable

%cmd% loadTopology 2 %~dp0\..\..\jadort-samples\src\main\resources\topology.xml

%cmd% getGroups 2
rem Select group servers on which the servers will be maintained.
%cmd% selectGroup 2 "xyleme-MyStore" "MAINTAIN"

rem %cmd% getSelectedGroup 2
rem Select the list of servers that will be maintened.
%cmd% selectServers 2 "jonas1" "jonas2"

rem %cmd% createApplication 2 %~dp0\..\..\jadort-samples\src\main\resources\MyStore\version-1.0.0\MyStore.ear

rem Go to the first maintenance step: stop worker
%cmd% next 2

rem You have to wait for ' canGoNextToNextStep 1 == 1" (1 = true)

pause

rem Go to the next maintenance step: stop server
%cmd% next 2

Troubleshooting
While using this tool, some unexpected errors may occur. As with normal (i.e. user-caused) errors, these are displayed as errors on the interface. This section details the unexpected error messages that can be displayed by the Web interface.
Error “Bean has been removed”
If you get this error, you must close and re-open your browser. Note that JaDOrT can always resume your operation.
[image: image14.png]Excaption in the VersioningSarvice client: The

[——

o)

Error “object Object”
This message means that JaDOrT has been undeployed from the application server. Please check the error’s cause with the system administrator.
[image: image15.png][object Object]

Other errors
For other error messages that are application bugs, the detailed error log is output on the application server.
1

2

3

Date at which the operation has been created

List of operations that have been started in the past

Indicates that the current step is topology initialization

1

2

3

Resume button allows user to resume an old operation

This button allows user to delete or abort a previous operation

This button selects the group of servers on which an application or application version migration will be done.

The name of the servers groups

Server Capacity as specified in the topology

The list of the applications deployed on the correspondent group

The list of the servers appertaining to the correspondent cluster

Type of the servers groups (user-defined)

This message indicates that the application uploaded is a new version of an existing application.

List of application deployed on this group of servers

This button selects the group of servers on that will be maintained

The name of the worker

If the archive file is too big, you can enter a URL where the file is located.

A progress bar to inform users about the progress of a task.

Progress Bar representing the global deployment progress on all servers

The status of task execution on each server

“View Log” Button allows user to get instantaneously information about the migration execution process of each server

This table represents the deployment status on each server

Progress Bar representing the global migration process on all servers

Green color row for other versions of the uploaded application

An error occurred while jonas2 server was trying to deploy the new version

A problem prevents the execution of Deploy New Version task

All servers are waiting the launch of migration execution

Restart this task on this server

Ignore this task on this server

Abort server allows user to stop the current task on the server

Number of active session on the serevr

Indicates if the server is already maintained

This table represents the Progress status of each server

This table represents the Progress status of each worker

“View Log” Button allows user to get instantaneously information about the execution task on each worker

The status of task execution on each worker

A progress bar to inform users about the progress of a task.

PAGE
22

